Abstract

ELL2 is an androgen-responsive gene that is expressed by prostate epithelial cells and is frequently down-regulated in prostate cancer. Deletion of Ell2 in the murine prostate induced murine prostatic intraepithelial neoplasia and ELL2 knockdown enhanced proliferation and migration in C4-2 prostate cancer cells. Here, knockdown of ELL2 sensitized prostate cancer cells to DNA damage and overexpression of ELL2 protected prostate cancer cells from DNA damage. Knockdown of ELL2 impaired non-homologous end joining repair but not homologous recombination repair. Transfected ELL2 co-immunoprecipitated with both Ku70 and Ku80 proteins. ELL2 could bind to and co-accumulate with Ku70/Ku80 proteins at sites of DNA damage. Knockdown of ELL2 dramatically inhibited Ku70 and Ku80 recruitment and retention at DNA double-strand break sites in prostate cancer cells. The impaired recruitment of Ku70 and Ku80 proteins to DNA damage sites upon ELL2 knockdown was rescued by re-expression of an ELL2 transgene insensitive to siELL2. This study suggests that ELL2 is required for efficient NHEJ repair via Ku70/Ku80 in prostate cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.