Abstract

ObjectiveTo compare the performance of risk adjustment models using the Elixhauser and Charlson comorbidity scores in predicting in-hospital outcomes of ACS patients from a nationwide administrative database. Study Design and SettingAll hospitalizations for ACS in the United States between 2004 and 2014 (n = 7,201,900) were retrospectively analyzed. We used ECS and CCI score based on ICD-9 codes to define comorbidity variables. Logistic regression models were fitted to three in-hospital outcomes, including mortality, Major Acute Cardiovascular & Cerebrovascular Events (MACCE) and bleeding. The prognostic values of ECS and CCI after adjusting for known confounders, were compared using the C-statistic, Akaike information criterion (AIC), and Bayesian information criterion (BIC). ResultsThe statistical performance of models predicting all in-hospital outcomes demonstrated that the ECS had superior prognostic value compared to the CCI, with higher C-statistics and lower AIC and BIC values associated with the former. ConclusionThis is the first study that compared the prognostic value of the ECS and CCI scores in predicting multiple ACS outcomes, based on their scoring systems. Better discrimination and goodness of fit was achieved with the Elixhauser method across all in-hospital outcomes studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.