Abstract
SummaryFrequently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) reveal a failure with high-voltage electrodes, e.g. LiNi0.6Mn0.2Co0.2O2 in lithium metal batteries, which can be monitored as an arbitrary appearance of a “voltage noise” during charge and can be attributed to Li dendrite-induced cell micro short circuits. This failure behavior disappears when incorporating linear PEO-based SPE in a semi-interpenetrating network (s-IPN) and even enables an adequate charge/discharge cycling performance at 40°C. An impact of any electrolyte oxidation reactions on the performance difference can be excluded, as both SPEs reveal similar (high) bulk oxidation onset potentials of ≈4.6 V versus Li|Li+. Instead, improved mechanical properties of the SPE, as revealed by compression tests, are assumed to be determining, as they mechanically better withstand Li dendrite penetration and better maintain the distance of the two electrodes, both rendering cell shorts less likely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.