Abstract

BackgroundA placental microbiome, which may be altered in gestational diabetes mellitus (GDM), has been described. However, publications raising doubts about the existence of a placental microbiome that is different than contaminants in DNA extraction kits and reagents (“kitomes”) have emerged. The aims of this study were to confirm the existence of a placental microbiome distinct from contaminants and determine if it is altered in GDM mothers.ResultsWe first enrolled normal weight, obese and GDM mothers (N = 17) at term elective cesarean section delivery in a pilot case control study. Bacterial DNA was extracted from placental parenchyma, maternal and cord blood, maternal vaginal-rectal swabs, and positive and negative controls with the standard Qiagen/MoBio Power Soil kit. Placentas had significantly higher copies of bacterial 16S rRNA genes than negative controls, but the placental microbiome was similar in all three groups and could not be distinguished from contaminants in blank controls. To determine the source and composition of the putative placental bacterial community identified in the pilot study, we expanded the study to 10 subjects per group (N = 30) and increased the number and variety of negative controls (N = 53). We modified our protocol to use an ultraclean DNA extraction kit (Qiagen QIAamp UCP with Pathogen Lysis Tube S), which reduced the “kitome” contamination, but we were still unable to distinguish a placental microbiome from contaminants in negative controls. We noted microbial DNA from the high biomass vaginal-rectal swabs and positive controls in placental and negative control samples and determined that this resulted from close proximity well-to-well cross contamination or “splashome”. We eliminated this source of contamination by repeating the sequencing run with a minimum of four wells separating high biomass from low biomass samples. This reduced the reads of bacterial 16S rRNA genes in placental samples to insignificant numbers.ConclusionsWe identified the problem of well-to-well contamination (“splashome”) as an additional source of error in microbiome studies of low biomass samples and found a method of eliminating it. Once “kitome” and “splashome” contaminants were eliminated, we were unable to identify a unique placental microbiome.

Highlights

  • A placental microbiome, which may be altered in gestational diabetes mellitus (GDM), has been described

  • Obese and normal weight mothers had normal 1-h glucose tolerance test (GTT) results compared to the GDM mothers

  • We found that the placental samples on average had very low numbers of reads, similar to blank controls, as did the maternal blood and cord blood samples (Supplemental Fig. S5)

Read more

Summary

Introduction

A placental microbiome, which may be altered in gestational diabetes mellitus (GDM), has been described. The Human Microbiome Project (HMP) was initiated to characterize and compare the complex microbial communities that inhabit different niches of the healthy adult human body, including the skin, nasal passages, oral cavity, gastrointestinal tract, and urogenital tract in an attempt determine whether a core healthy human microbiome exists in each of these sites [1, 2]. This project has generated an extensive database using sequencing of bacterial 16S rRNA genes. We embarked on this study to investigate the possible existence of a “macrosomia-associated” placental microbiome in mothers with GDM

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.