Abstract

Field-effect transistors (FETs) made from colloidal quantum dot (QD) solids commonly suffer from current-voltage hysteresis caused by the bias-stress effect (BSE), which complicates fundamental studies of charge transport in QD solids and the use of QD FETs in electronics. Here, we show that the BSE can be eliminated in n-channel PbSe QD FETs by first removing the QD ligands with a dose of H2S gas and then infilling the QD films with alumina by atomic layer deposition (ALD). The H2S-treated, alumina-infilled FETs have stable, hysteresis-free device characteristics (total short-term stability), indefinite air stability (total long-term stability), and a high electron mobility of up to 14cm2V-1s-1, making them attractive for QD circuitry and optoelectronic devices. The BSE-free devices are utilized to conclusively establish the dependence of the electron mobility on temperature and QD diameter. We demonstrate that the BSE in these devices is caused by both electron trapping at the QD surface and proton drift within the film. The H2S/alumina chemistry produces ligand-free PbSe/PbS/Al2O3 interfaces that lack the traps that cause the electronic part of the BSE, while full alumina infilling stops the proton motion responsible for the ionic part of the BSE. Our matrix engineering approach should aid efforts to eliminate the BSE, boost carrier mobilities, and improve charge transport in other types of nanocrystal solids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call