Abstract

Nucleated cells, unlike erythrocytes, are able to survive limited complement attack by eliminating potentially cytolytic complement channels from the plasma membrane (PM) by processes that involve, plasma membrane (PM) by processes that involve, but may not be limited to, endocytosis. The observation that C5b-9 channels, as well as C5b-8 and C5b-7 intermediates, are rapidly eliminated from the cell surface of nucleated cells has prompted us to examine whether terminal complement complexes stimulate membrane events that lead to accelerated elimination of these complexes. We have suggested previously that ion flux through terminal complement complexes might influence the rate of elimination on the basis of our finding that terminal complement complexes with larger functional channel sizes are more rapidly eliminated. In this study, we examined the role of Ca2+ on the elimination rate of terminal complement complexes in the PM of Ehrlich cells, because changes in Ca2+ flux across the PM are known to influence many metabolic activities including endocytosis. To determine the elimination rate for terminal complement complexes by functional analysis, cells bearing C5b-7 or C5b-8 complexes with or without a sublytic dose of C9 were incubated at 37 degrees C for various time intervals before converting the remaining complexes to lytic C5b-9 channels. The initial elimination rates for the terminal complement complexes were compared in the presence of 0.015, 0.15, and 1.5 mM CaCl2 in the medium. Sufficient lowering of the extracellular Ca2+ concentration, (Ca2+)o, resulted in prolonging the elimination of each of the terminal complement complexes to a different extent. The effect of (Ca2+)o on the elimination rate was most pronounced for C5b-8 in the presence of a sublytic number of C5b-9, with less of an effect on C5b-8 alone, and the least effect with C5b-7. The elimination rates for terminal complement complexes were also determined by measuring the persistence of C5b antigen on the cell surface at 37 degrees C in the presence of various (Ca2+)o by using fluorescence-activated cell sorter analysis and were comparable with that obtained by functional analysis. Examination of the effect of terminal complement complexes on the cellular Ca2+ concentration, (Ca2+)i, revealed that these complexes increased the (Ca2+)i in proportion with the known functional pore size of the terminal complement complex in the PM. In addition, Quin 2, which can buffer internal Ca2+ transients, was found to increase the susceptibility of Ehrlich cells to lysis by C5b-9, further suggesting a relationship between the (Ca2+)i and the elimination process.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.