Abstract
Abstract The problem of dependent cut joint constraints for kinematic loops in rigid multibody systems is addressed. The constraints are reduced taking into account the subalgebra generated by the screw system of the kinematic loop. The elimination of dependent constraint equations is based on constructing a basis matrix of the screw algebra generated by loop’s screw system. This matrix is configuration independent and thus always valid. The determination of the sufficient constraints is achieved with a SVD or QR decomposition of this matrix. Unlike all other proposed approaches the presented method is singularity consistent because it is not the Jacobian which is decomposed, but instead a basis matrix for the loop algebra. Since this basis is obtained after a finite number of cross products the computational effort is negligible. Furthermore, because the elimination process is only necessary once in advance of the integration/simulation process, it proved valuable even if it does not remove all dependent constraints, as for paradoxical mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.