Abstract

The article deals with an arbitrary elastic 3D-system (body) that performs a controlled finite rotation with respect to some fixed axis and small nonstationary oscillations. The system oscillations occur due to external load (power control) or inertial load of the rotational transportation of the carrying body (kinematic control). The linear equations of oscillations are used in normal coordinates, in which motion is represented by eigenmodes of vibrations for system that is free in the rotation angle (including system rotation as a solid body in the case of power control) and for system fixed in rotation angle in the case of kinematic control. It is assumed that the (power or inertial)load acting on the system is proportional to some controlling finite time function from a certain class. The purpose of this article is to solve the problem of system rotation for a certain time from one rest position to another at a given finite angle using the given control function and to eliminate the elastic oscillations on the several lowest eigenmodes at the stopping time. The relations between the time of the system rotation under the action of a given control function and the eigenmodes frequencies for oscillations being eliminated are obtained on the basis of the exact solutions of the equations in normal coordinates. These relations satisfy the zero initial and final conditions. They are “tuned” by minimizing the positive definite quadratic form written for them by varying the system parameters to fulfill these relations simultaneously for several eigenfrequencies. As an example, the calculations for a model of a symmetrical spacecraft with two identical elastic solar cell panels consisting of four planar non-deformable sections connected by elastic hinges are carried out for comparison and analysis of the results accuracy. The finite rolling motion of the system with the damping at the stopping time of rotation for several (from one to three) lowest eigenmodes of antisymmetric vibrations is considered. The comparisons of the initial equations of motion for the system in generalized coordinates using several simple control functions and the found parameters of the “tuned” system with numerical solutions are accomplished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.