Abstract

It is very necessary to produce bio-activated carbon for special use with easy procedure and low cost. One kind of huge surface area microporous bio-material was successfully prepared from agricultural residues (peanut shell, Arachis hypogaea Linn.) and beneficially applied to control elemental mercury (Hg0) in simulated coal-fired flue gas in this study. The possible effects of experimental factors including activator, reaction temperature, and flue components were investigated. The physicochemical properties of the prepared adsorbents were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDX), and X-ray photoelectron spectroscopy (XPS). The results indicated that the peanut shell activated carbon presented excellent Hg0 removal efficiency near 90% at 150°C. The characterization analysis indicated that the removal characteristics were governed by both physical adsorption and chemical adsorption. The chemisorbed mercury on the activated carbon was mainly distinguished into mercuric chloride (HgCl2) and mercuric oxide (HgO). The presence of C-Cl and O* promoted Hg0 into HgCl2 and HgO. Zinc chloride could not only improve the micropore quantity of activated carbon but also have remarkably positive effects on the elemental mercury removal. This study provided a practical and easy preparation method of bio-activated carbon for Hg0 removal with low cost. Graphical Abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call