Abstract

The brain mesoaccumbens dopamine system is intricately involved in the psychomotor stimulant activities of cocaine. However, the extent to which different dopamine receptors mediate these effects has not yet been firmly established. The present study used dopamine D1 receptor mutant mice produced by gene targeting to investigate the role of this receptor in the effects induced by cocaine. In contrast with wild-type mice, which showed a dose-dependent increase in locomotion, D1 mutant mice exhibited a dose-dependent decrease. Electrophysiological studies of dopamine-sensitive nucleus accumbens neurons demonstrated a marked reduction in the inhibitory effects of cocaine on the generation of action potentials. In addition, the inhibitory effects of dopamine as well as D1 and D2 agonists were almost completely abolished, whereas those of serotonin were unaffected. D2-like dopamine receptor binding was also normal. These results demonstrate the essential role of the D1 receptor in the locomotor stimulant effects of cocaine and in dopamine-mediated neurophysiological effects within the nucleus accumbens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call