Abstract
δ ferrite serves as a detrimental phase in TF (Toroidal Field) superconducting magnet jacket pipe materials. The distribution features of ferrite in N50 casting and forging were investigated, and the cryogenic mechanical properties with different ferrite content were studied accordingly. The results indicated that the non-equilibrium crystallization leads to the solidification mode gradually changing from AF (Austenitic-ferritic) at the surface to the FA (Ferritic-austenitic) at the center of the casting. The skeleton δ ferrites induced by interdendritic segregation could disappear almostly after annealing while the tangled lath δ ferrite at the center of casting caused by the more serious segregation seems to be stable. Based on thermodynamics calculations and through changing the Cr and Ni content according to the Espy diagram, the stable ferrites can be eliminated when the Creq/Nieq is less than 1.25. From fractography, the cryogenic impact toughness of N50 steel would be deteriorated because more secondary cracks were taken place by the mismatched deformation between the harder residual δ ferrites and matrix. Though the elimination of δ ferrites caused a slight decrease in cryogenic tensile strength, it greatly improved the cryogenic impact toughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.