Abstract
The vertical stripe defects on silicon steel surface seriously affect the appearance and electromagnetic properties of silicon steel products. Eliminating such defects is adifficult and urgent technical problem. This paper investigates the relationship between the defects and their influence factors by classification methods. However, when the common classification methods are used in the problem, we cannot obtain a classifier with high accuracy. Byanalysis of the data set, we find that it is imbalanced and inconsistent. Because the common classification methods are based on accuracy‐maximization criterion, they are not applicable to imbalanced and inconsistent data set. Thus, we propose asupport‐degree‐maximization criterion and anovel cost‐sensitive loss function and also establish an improved L1/2 regularization approach for solution of the problem. Moreover, by employing reweighted iteration gradient boosting algorithm, we obtain a linear classifier with a high support degree. Through analyzing the classifier, we formulate a rule under which the silicon steel vertical stripe defects do not occur in the existing production environment. By applying the proposed rule to 50TW600 silicon steel production, the vertical stripe defects of the silicon steel products have been greatly decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.