Abstract

A nondestructive one-step approach was applied for grafting biocide-free monodispersed silica nanoparticles (SNPs) with a diameter of 30 ± 10 nm on polystyrene, polyethylene, and polyvinyl chloride surfaces. The prepared surfaces were comprehensively characterized using spectroscopic (Fourier transform infrared attenuated total reflection, ultraviolet–visible, and X-ray photoelectron spectroscopy) and microscopic (high-resolution scanning electron microscopy and atomic force microscopy) methods. The modified polymers were found to maintain their original mechanical and physical properties, while their nanoroughness on the other hand had risen by 1.6–2.7 times because of SNP grafting. The SNP-grafted surfaces displayed anti-biofouling properties, resulting in a significant reduction in the attached Gram-positive Bacillus licheniformis or Gram-negative Pseudomonas aeruginosa bacteria compared to their nongrafted counterparts. Confocal laser scanning microscopy and scanning electron microscopy studies have confirmed that bacterial cells could not successfully adhere onto the SNP-grafted polymer films regardless of the polymer type, and their biofilm formation was therefore damaged. The presented facile and straightforward protocol allows eliminating the need for biocidal agents and resorts to grafted nanosilica instead. This strategy may serve as a feasible and safe platform for the development of sustainable anti-biofouling surfaces in biomedical devices; food, water, and air treatment systems; and industrial equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.