Abstract

A before and after study framework measures the outcomes in a group of participants before introducing an intervention, and then again afterward. In this study, a before and after study framework is adopted to evaluate the effectiveness of transportation policies and emerging technologies. Generally, the outcome of every before and after study will help decision-makers to monitor and understand the effects of interventions and to make sound decisions. However, many factors such as seasonal factors, holidays, and lane closures might interfere with the evaluation process by inducing variation in traffic volume during the before and after periods. In practice, limited effort has been made to eliminate the effects of these factors. In this study, an extreme gradient boosting (XGBoost)-based propensity score matching (PSM) method is proposed to reduce the biases caused by traffic volume variation during the before and after periods. In order to evaluate the effectiveness of the proposed method, a corridor in the City of Chandler, Arizona where an advanced traffic signal control system has been recently implemented was selected. The results indicated that the proposed method can effectively eliminate the variation in traffic volume caused by the COVID-19 during the evaluation process. In addition, the results of the t-test and Kolmogorov-Smirnov (KS) test demonstrated that the proposed method outperforms other state-of-the-art PSM methods. The application of the proposed method is also transferrable to other before and after evaluation studies and can significantly assist transportation engineers to eliminate the impacts of traffic volume variation on the evaluation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call