Abstract

Thermostatic Radiator Valves (TRV) have proved their significant contribution in energy savings for several years. However, at low heat demands, an unstable oscillatory behavior is usually observed and well known for these devices. This instability is due to the nonlinear dynamics of the radiator itself which result in a large time constant and high gain for radiator at low flows. A remedy to this problem is to make the controller of TRVs adaptable with the operating point instead of widely used fixed PI controllers. To this end, we have derived a linear parameter varying model of radiator, formulated based on the operating flow rate, room temperature and the radiator specifications. In order to derive such formulation, the partial differential equation of the radiator heat transfer dynamics is solved analytically. Using the model, a gain schedule controller among various possible control strategies is designed for the TRV. It is shown via simulations that the designed controller based on the proposed LPV model performs excellent and stable in the whole operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.