Abstract

We study conditions under which a finite simplicial complex $K$ can be mapped to $\mathbb R^d$ without higher-multiplicity intersections. An almost $r$-embedding is a map $f: K\to \mathbb R^d$ such that the images of any $r$ pairwise disjoint simplices of $K$ do not have a common point. We show that if $r$ is not a prime power and $d\geq 2r+1$, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost $r$-embedding of the $(d+1)(r-1)$-simplex in $\mathbb R^d$. This improves on previous constructions of counterexamples (for $d\geq 3r$) based on a series of papers by M. Ozaydin, M. Gromov, P. Blagojevic, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If $r\ge3$ and if $K$ is a finite $2(r-1)$-complex then there exists an almost $r$-embedding $K\to \mathbb R^{2r}$ if and only if there exists a general position PL map $f:K\to \mathbb R^{2r}$ such that the algebraic intersection number of the $f$-images of any $r$ pairwise disjoint simplices of $K$ is zero. This result can be restated in terms of cohomological obstructions or equivariant maps, and extends an analogous codimension 3 criterion by the second and fourth authors. As another application we classify ornaments $f:S^3 \sqcup S^3\sqcup S^3\to \mathbb R^5$ up to ornament concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for $r=2$ is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.