Abstract

BackgroundIvermectin has longevity reducing effects in several insect species, including disease transmitting mosquitoes after feeding on hosts that have received ivermectin treatment. This has important implications in mosquito population control and thus the reduction of disease transmission. In addition, ivermectin could play an enormous role in mosquito control operations by its use in the female elimination process during mass-rearing, enabling the release of only sterile males in the context of the sterile insect technique (SIT).MethodsBlood meals were spiked with various toxicants and were then offered to adult Anopheles arabiensis and killing effects were observed. Varying concentrations of the most effective substance were then tested in subsequent trials to obtain an optimal dose for quick and total female elimination. The remaining males were mated with untreated virgin females to assess whether their mating efficiency had been compromised. The most promising substance at the optimal concentration was further tested on a larger number of adults, after they had been irradiated and partially sterilised as pupae with 70 Gy to evaluate the feasibility of the method in a mass-rearing, and SIT context. The males resulting from the latter trial were also checked for mating efficiency post treatments.ResultsIvermectin (Virbamec®) at a concentration of 7.5 ppm was chosen from the toxicants tested as sufficiently effective in eliminating all female An. arabiensis in 4 days, the shortest time required for female elimination of all chemicals tested. Mating efficiency of the non-blood feeding male mosquitoes was not compromised significantly compared to controls even when they were kept for a total of 4 days (from emergence) before theoretical release. The irradiation treatment did not affect overall female feeding behaviour in this setting, nor were the sterile males less competitive for mating with virgin females after the treatments than virgin sterile males that had not been in the ivermectin treatment environment.ConclusionsSpiking bloodmeals with ivermectin has shown potential as a viable treatment to eliminate female An. arabiensis from laboratory colonies although its practical use in a mass-rearing facility still needs to be tested.

Highlights

  • Ivermectin has longevity reducing effects in several insect species, including disease transmitting mosquitoes after feeding on hosts that have received ivermectin treatment

  • Similar treatment effects were observed in mosquitoes following the mass drug administration (MDA) of ivermectin to humans: An. gambiae could be killed within 6 days after the administration of a standard dose of ivermectin (150 to 200 μg/kg body weight), indicating a mosquito population reducing effect that may have the potential to reduce malaria transmission [4]

  • Spinosad at 10 ppm was able to knock down females within 12 h of the bloodmeal, but they took longer to die than the ivermectin bloodmeals, which knocked down females almost immediately after blood-feeding, and killed them within 12 h, resulting in almost 80% female kill after the first bloodmeal

Read more

Summary

Introduction

Ivermectin has longevity reducing effects in several insect species, including disease transmitting mosquitoes after feeding on hosts that have received ivermectin treatment This has important implications in mosquito population control and the reduction of disease transmission. Ivermectin is a macrocyclic lactone extract from the bacteria Streptomyces avarnitalis that acts at invertebrate glutamate-gated chloride channels [1] inhibiting neurotransmission and thereby affecting the nervous system and muscle function in parasites This drug has proven to be effective for treating mammals against a broad range of nematodes and ectoparasites [2] and is used globally in animal husbandry practices. Similar treatment effects were observed in mosquitoes following the MDA of ivermectin to humans: An. gambiae could be killed within 6 days after the administration of a standard dose of ivermectin (150 to 200 μg/kg body weight), indicating a mosquito population reducing effect that may have the potential to reduce malaria transmission [4]. This lethal effect was only apparent for one week, this treatment modality alone will not serve as an effective intervention strategy [2,5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.