Abstract
Hypersequent calculi, introduced independently by Pottinger and Avron, provide a powerful generalization of ordinary sequent calculi. In the paper we present a proof of eliminability of cut in hypersequent calculi for three modal logics of linear frames: K4.3, KD4.3 and S4.3. Our cut-free calculus is based on Avron's HC formalization for Gödel–Dummett's logic. The presented proof of eliminability of cut is purely syntactical and based on Ciabattoni, Metcalfe, Montagna's proof of eliminability of cut for hypersequent calculi for some fuzzy logics with modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.