Abstract

Mosquito-borne diseases such as malaria and dengue fever take a large toll on global health. The primary chemical agents used for controlling mosquitoes are insecticides that target the nervous system. However, the emergence of resistance in mosquito populations is reducing the efficacy of available insecticides. The development of new insecticides is therefore urgent. Here we show that VU573, a small-molecule inhibitor of mammalian inward-rectifying potassium (Kir) channels, inhibits a Kir channel cloned from the renal (Malpighian) tubules of Aedes aegypti (AeKir1). Injection of VU573 into the hemolymph of adult female mosquitoes (Ae. aegypti) disrupts the production and excretion of urine in a manner consistent with channel block of AeKir1 and renders the mosquitoes incapacitated (flightless or dead) within 24 hours. Moreover, the toxicity of VU573 in mosquitoes (Ae. aegypti) is exacerbated when hemolymph potassium levels are elevated, suggesting that Kir channels are essential for maintenance of whole-animal potassium homeostasis. Our study demonstrates that renal failure is a promising mechanism of action for killing mosquitoes, and motivates the discovery of selective small-molecule inhibitors of mosquito Kir channels for use as insecticides.

Highlights

  • Mosquitoes are vectors of debilitating diseases that take an immense toll on global health

  • Of the estimated 50–100 million individuals infected with dengue each year, hundreds of thousands require hospitalization and tens of thousands die [2]. These protozoan and viral pathogens are transmitted to humans solely by adult female mosquitoes, which feed on vertebrate blood to obtain nutrients for developing eggs

  • We tested whether VU573 inhibits the mosquito Kir channel, AeKir1

Read more

Summary

Introduction

Mosquitoes are vectors of debilitating diseases that take an immense toll on global health. To confirm the inhibition of Kir channels by VU573, we used two-electrode voltage clamping to measure the basolateral membrane voltage (Vbl) and input resistance (Rpc) of principal cells of isolated Malpighian tubules [21]. To determine whether the VU573-mediated inhibition of fluid secretion by isolated Malpighian tubules causes renal failure in intact mosquitoes, we measured urine excretion rates using a method modified from the laboratory of Hansen [22].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.