Abstract

Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.

Highlights

  • As genome-wide association studies (GWAS) have considered a greater diversity of traits in greater numbers of samples, comparative analyses of GWAS results have become a useful tool to explore the aetiological connections between different traits

  • One method for doing this is “coloc”, which updates prior knowledge about the chance of two traits sharing a causal variant with observed genetic association data in a Bayesian statistical framework

  • We walk through several data-driven approaches to summarise the prior knowledge required for this technique, and propose sensitivity analysis as a means of checking that inference is robust to uncertainty about that prior knowledge

Read more

Summary

Introduction

As genome-wide association studies (GWAS) have considered a greater diversity of traits in greater numbers of samples, comparative analyses of GWAS results have become a useful tool to explore the aetiological connections between different traits. [8] This routine testing of all possible mediators is similar in design to the assessment of potential molecular causes of disease, which has been addressed through alternative approaches that focus not on whether one trait is causal for another, but whether two traits share the same causal variants in a single, LD-defined, genetic region, termed colocalisation While one such method is built on MR [9] and proceeds by filtering MR-positive associations via a test of heterogeneity in the estimated proportional effect across multiple SNPs in the region, another popular colocalisation method, coloc, [10] avoids MR assumptions altogether. Each configuration corresponds to exactly one of five mututally exclusive hypotheses about association and genetic sharing in the region: H0 : no association H1 : association to trait 1 only H2 : association to trait 2 only H3 : association to both traits; distinct causal variants H4 : association to both traits; shared causal variant

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.