Abstract
Carbon nanotubes as novel plant elicitors are intensively studied in biotechnology due to their concentration-dependent effects on plant health. This emphasizes the importance of studying nanomaterials in the field of plant nanotoxicology and enables a better understanding of their advantages and disadvantages for plant health. Researchers examined how various concentrations of multi-walled carbon nanotubes (MWCNTs) affect growth and polyphenolic accumulation in the medicinal herb, Melissa officinalis. Two-month-old plant shoots were sprayed with various concentrations (0–250 mg L−1) of COOH- functionalized MWCNTs and harvested two and three weeks after elicitation. TEM images confirmed MWCNTs uptake into the mesophyll and the vessels of leaves. Low to moderate MWCNT concentrations (50–100 mg L−1) boosted growth indices and increased total amount of phenols, flavonoids, and phenolic acids, peaking three weeks after treatment with 100 mg L−1 MWCNTs, without destroying the cells and subcellular organelles. HPLC analysis showed this treatment yielded the highest content of rosmarinic acid, salvianolic acid B, apigenin, and kaempferol. However, 250 mg L−1 MWCNTs damaged cells without boosting metabolite production. We suggest that elicitation with low to moderate MWCNT concentrations can be a useful tool for laboratory-scale production of phenolic metabolites in M. officinalis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.