Abstract

We discuss elicitation and validation of graphical dependency models of dependability assessment of complex, computer-based systems. Graphical (in)dependency models are network-graph representations of the assumed conditional dependences (statistical associations) of multivariate probability distributions. These powerfully ‘visual’, yet mathematically formal, representations have been studied theoretically, and applied in varied contexts, mainly during the last 15 years. Here, we explore the application of recent Markov equivalence theory, of such graphical models, to elicitation and validation of dependability assessment expertise. We propose to represent experts’ statements by the class of all Markov non-equivalent graphical models consistent with those statements. For any one of these models, we can produce alternative, but formally Markov equivalent, graphical representations. Comparing different graphical models highlights subsets of their underlying assumptions.KeywordsDependability AssessmentConditional IndependenceHasse DiagramGraphical NotationBayesian Belief NetworkThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.