Abstract

We present a theory that is a non-Fermi-liquid counterpart of the Abrikosov–Gor’kov pair-breaking theory due to paramagnetic impurities in superconductors. To this end we analyze a model of interacting electrons and phonons that is a natural generalization of the Sachdev–Ye–Kitaev-model. In the limit of large numbers of degrees of freedom, the Eliashberg equations of superconductivity become exact and emerge as saddle-point equations of a field theory with fluctuating pairing fields. In its normal state the model is governed by non-Fermi liquid behavior, characterized by universal exponents. At low temperatures a superconducting state emerges from the critical normal state. We study the role of pair-breaking on Tc, where we allow for disorder that breaks time-reversal symmetry. For small Bogoliubov quasi-particle weight, relevant for systems with strongly incoherent normal state, Tc drops rapidly as function of the pair breaking strength and reaches a small but finite value before it vanishes at a critical pair-breaking strength via an essential singularity. The latter signals a breakdown of the emergent conformal symmetry of the non-Fermi liquid normal state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.