Abstract
AimsThe ELFN1, discovered in 2007, is a single-pass transmembrane protein. Studies conducted thus far to elucidate the function of the Elfn1 have been limited only to animal studies. These studies have reported that ELFN1 is a universal binding partner of metabotropic glutamate receptors (mGluRs) in the central nervous system and its functional deficiency has been associated with the pathogenesis of neurological and neuropsychiatric diseases. In 2021, we described the first disease-associated human ELFN1 pathogenic gene mutation. Severe joint laxity, which was the most striking finding of this new disease and was clearly seen in the patients since early infancy, showed that the ELFN1 may have a possible function in the connective tissue besides the nervous system. Here, we present the first experimental evidence of the extracellular matrix (ECM)-related function of the ELFN1. Materials and methodsPrimary skin fibroblasts were isolated from the skin biopsies of ELFN1 mutated patients and healthy foreskin donors. For the clinical trial in a dish, in vitro ECM and DEM (decellularized ECM) models were created from skin fibroblasts. All the in vitro models were comparatively characterized and analyzed. Key findingsThe mutation in the ELFN1 signal peptide region of patients resulted in a severe lack of ELFN1 expression and dramatically altered the characteristic morphology and behavior (growth, proliferation, and motility) of fibroblasts. SignificanceWe propose that ELFN1 is involved in the cell-ECM attachment, and its deficiency is critical enough to cause a loss of cell motility and soft ECM stiffness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.