Abstract

During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis–free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.

Highlights

  • Breast cancer is a heterogeneous disease in which subtypes predicting differential clinical outcome are recognized based on shared patterns of gene expression and mutation, indicating a shared path to cancer [1]

  • We have discovered that ELF5 drives the spread of tumor cells to the lungs

  • We demonstrate that the underlying mechanism for this metastatic spread is via recruitment of the innate immune system

Read more

Summary

Introduction

Breast cancer is a heterogeneous disease in which subtypes predicting differential clinical outcome are recognized based on shared patterns of gene expression and mutation, indicating a shared path to cancer [1]. The most striking subtype distinction in breast cancer is provided by expression of ESR1, the estrogen receptor (ER). This divides breast cancer into two very different diseases, recognizable by more than their response to hormones and antiestrogen therapies. ER+ cancers are more insensitive to chemotherapy than those that are ER- [4,5,6] The basis for this phenotypic dichotomy probably includes the characteristics of the cancer’s cell of origin, which for the basal ER- and luminal ER+ breast cancer subtypes are thought to be the members of the mammary progenitor cell pool [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.