Abstract

Uniform models for the Earth–ionosphere cavity are considered with particular attention to the physical properties of the ionosphere for the extremely low frequency (ELF) range. Two consistent features have long been recognized for the range: the presence of two distinct altitude layers of maximum energy dissipation within the lower ionosphere, and a “knee”-like change in the vertical conductivity profile representing a transition in dominance from ion-dominated to electron-dominated conductivity. A simplified two-exponential version of the Greifinger and Greifinger (1978) technique widely used in ELF work identifies two slopes in the conductivity profile and, providing accurate results in the ELF communication band (45– 75 Hz ), simulates too flat a frequency dependence of the quality factor within the Schumann resonance frequency range (5– 40 Hz ). The problem is traced to the upward migration, with frequency increasing, of the lower dissipation layer through the “knee” region resulting in a pronounced decrease of the effective scale height for conductivity. To overcome this shortcoming of the two-exponential approximation and still retain valuable model analyticity, a more general approach (but still based on the Greifinger and Greifinger formalism) is presented in the form of a “knee” model whose predictions for the modal frequencies, the wave phase velocities and the quality factors reasonably represent observations in the Schumann resonance frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.