Abstract
Extremely low-frequency (ELF) magnetic fields have previously been shown to affect conformation of chromatin, cell proliferation, and calcium metabolism. Possible mutagenic and carcinogenic effects of ELF have also been discussed and tested. In this study, intrachromosomal recombination in the hprt gene after exposure to ELF magnetic field was investigated using the SPD8 recombination assay. SPD8 cells, derived from V79 Chinese hamster cells were exposed to ELF at a specific combination of static and ELF magnetic fields, that has been proven to have effects on chromatin conformation in several cell types. The genotoxic agent camptothecin (CPT) was used either as a positive control or simultaneously with ELF. We also analysed the effect of ELF and CPT on chromatin conformation with the anomalous viscosity time dependence (AVTD) technique, cell growth kinetics, and cell survival with clonogenic assay. DNA fragmentation was analysed by pulsed field gel electrophoresis (PFGE). ELF did not induce recombination alone, neither did ELF modify the recombinogenic effect of CPT. Although, there was no effect on cell survival in response to ELF exposure, inhibition of cell growth was observed. On the other hand, ELF exposure partly counteracted the growth inhibition seen with CPT. The data suggest that ELF exposure may stimulate or inhibit cell growth depending on the state of the cells. Although, ELF did not induce recombination, a weak but statistically significant DNA fragmentation comparable with CPT-induced fragmentation was observed with PFGE 48 h after exposure to ELF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mut.Res.-Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.