Abstract

Variation in leaf traits of dominant tree species in six montane rain forest communities was analyzed along an elevational gradient ranging from 1220 to 2560 m within a single basin at La Chinantla, Oaxaca, Mexico. Three groups of characters were used: morphological (leaf shape, margin, blade configuration, and phyllotaxy), morphometric (leaf area, leaf mass per area, stomatal density, and blade length/width ratio), and anatomical (thicknesses of blade, palisade [PP], and spongy [SP] parenchymae, PP/SP ratio, and epidermis and cuticle thicknesses). The variation of morphological characteristics was only evident at the highest elevations; in contrast, thickness of leaf blade, PP, SP, as well as leaf mass per area clearly increased along the gradient, whereas leaf area was the only variable that significantly decreased with elevation. Thicknesses of epidermis and of the two cuticles were not significantly correlated with elevation. A classification analysis based on a leaf trait matrix led to the distinction between low and high elevation communities, with an approximate limit between them at ca 2300 to 2400 m. The results are discussed in light of environmental changes occurring along elevational gradients. Leaf characteristics of montane rain forest plants offer important insights about the complex roles of abiotic factors operating in these environments and supplement the traditional physiognomic classification schemes for these communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call