Abstract

The climate is changing rapidly, and this may pose a major threat to global biodiversity. One of the most distinctive consequences of climate change is the poleward and/or upward shift of species distribution ranges associated with increasing temperatures, resulting in a change of species composition and community structure in the forest ecosystems. The Baekdudaegan mountain range connects most forests from the lowland to the subalpine zone in South Korea and is therefore recognized as one of the most important biodiversity hotspots. This study was conducted to understand the distribution range of vascular plants along elevational gradients through field surveys in the six national parks of the Baekdudaegan mountain range. We identified the upper and lower distribution limits of a total of 873 taxa of vascular plants with 117 families, 418 genera, 793 species, 14 subspecies, 62 varieties, two forms, and two hybrids. A total of 12 conifers were recorded along the elevational gradient. The distribution ranges of Abies koreana, Picea jezoensis, Pinus pumila, and Thuja koraiensis were limited to over 1000 m above sea level. We also identified 21 broad-leaved trees in the subalpine zone. A total of 45 Korean endemic plant species were observed, and of these, 15 taxa (including Aconitum chiisanense and Hanabusaya asiatica) showed a narrow distribution range in the subalpine zone. Our study provides valuable information on the current elevational distribution ranges of vascular plants in the six national parks of South Korea, which could serve as a baseline for vertical shifts under future climate change.

Highlights

  • IntroductionSouth Korea is surrounded by the sea on three sides, a mostly mountainous terrain covers 64% of its land area, and it experiences diverse patterns of climate from a cold continental climate to a warm oceanic climate (Yi 2011)

  • In the past 130 years, the average global temperature has risen by approximately 0.85 °C, and by 2100, it is likely to increase by 1.9–5.2 °C, depending on the level of greenhouse gas emissions (National Institute of Meteorological Sciences 2019)

  • This study reveals the elevational distribution ranges of 873 taxa of vascular plants in the six national parks of the Baekdudaegan range through field surveys that apply consistent methods such as survey routes and sections

Read more

Summary

Introduction

South Korea is surrounded by the sea on three sides, a mostly mountainous terrain covers 64% of its land area, and it experiences diverse patterns of climate from a cold continental climate to a warm oceanic climate (Yi 2011). These traits provide excellent conditions for high biodiversity. Studies on changes in species’ distribution ranges under future climate change have forecasted the expansion of potential habitats for the evergreen broad-leaved trees (e.g., Camellia japonica) and the contraction of potential habitats for the subalpine plant species (e.g., Abies holophylla, Taxus cuspidate, and Betula ermanii) as temperature rises (Park et al 2016; Adhikari et al 2018)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.