Abstract

Lipid accumulation in podocytes is a major determinant of diabetic kidney disease (DKD) and identification of potential therapeutic targets by mediating podocyte lipid metabolism has clinical importance. This study was to elucidate the role of JAML (junctional adhesion molecule-like protein) in the pathogenesis of DKD. We first confirmed the expression of JAML in podocytes and found that podocyte-specific deletion of Jaml ameliorated podocyte injury and proteinuria in two different models of diabetic mice. We further demonstrated a novel role of JAML in regulating podocyte lipid metabolism through SIRT1-mediated SREBP1 signaling. Similar results were also found in mice with adriamycin-induced nephropathy. Importantly, we observed a higher expression of JAML in glomeruli from subjects with DKD and other types of proteinuric kidney diseases, and the level of JAML was correlated with lipid accumulation and glomerular filtration rate, suggesting that JAML may be an attractive therapeutic target for proteinuric kidney disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.