Abstract

To analyze the mechanism of hypoxia-induced changes of the intracellular Ca(2+) concentration ([Ca(2+)](i)) in retinal ganglion cells (RGCs). Fluo-3 was applied to the cut edge of the optic nerve of 6-week-old rats. The retina was sliced, and the Ca images were captured. A hypoxic condition was created by superfusing the retinal slice with an oxygen/glucose-deprived solution. The retrograde staining method filled the RGCs selectively. Fifteen minutes of hypoxic conditions induced an increase in [Ca(2+)](i) in the RGCs (Delta0.13 +/- 0.03, n = 23). Application of 60 microM DL-2-amino-5-phosphonovaleric acid partially blocked the hypoxia-induced [Ca(2+)](i) increase in dendrites (Delta0.03 +/- 0.02, n = 4, P < 0.05) but not in the somata (Delta0.12 +/- 0.02, n = 9). The RGC dendrites showed a further increase in [Ca(2+)](i) after being switched back to an oxygenated solution (Delta0.14 +/- 0.04, n = 4). Neither 6-cyano-7-nitroquinoxaline-2,3-dione disodium, DL: -threo-beta-benzyloxyaspartate, nifedipine, nor bepridil inhibited the hypoxia-induced [Ca(2+)](i) increase. A Ca(2+)-free superfusion prevented the hypoxia-induced [Ca(2+)](i) increase in the somata (Delta0.07 +/- 0.02, n = 5, P < 0.05) but not in the dendrites (Delta0.16 +/- 0.005, n = 4). The mechanism of the hypoxia-induced increase in [Ca(2+)](i) differs between somata and dendrites. The N-methyl-D-aspartate channel of dendrites seems to be the main route of Ca(2+) influx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.