Abstract

Proline-rich proteins (PRP) are cell wall and plasma membrane-anchored factors involved in cell wall maintenance and its stress-induced fortification. Here we compare the synthesis of P5C as the proline (Pro) precursor in the cytosol and chloroplast by an introduced alien system and evaluate correlation between PRP synthesis and free Pro accumulation in plants. We developed a Pro over-producing system by generating transgenic tobacco plants overexpressing E. coli P5C biosynthetic enzymes; Pro-indifferent gamma-glutamyl kinase 74 (GK74) and gamma-glutamylphosphate reductase (GPR), as well as antisensing proline dehydrogenase ( ProDH) transcription. GK74 and GPR enzymes were targeted either to the cytosol or plastids. Molecular analyses indicated that the two bacterial enzymes are efficiently expressed in plant cells, correctly targeted to the cytosol or chloroplasts, and processed to active enzymatic complexes in the two compartments. Maximal Pro increase is obtained when GK74 and GPR are active in chloroplasts, and ProDH mRNA level is reduced by anti-sense silencing, resulting in more than 50-fold higher Pro content compared to that of wild type tobacco plants. The Pro over-producing system efficiently works in tobacco and Arabidopsis. The elevation of Pro levels promotes accumulation of ectopically expressed Cell Wall Linker Protein (AtCWLP), a membrane protein with an external Pro-rich domain. These results suggest that the Pro-generating system can support endogenous or alien PRP production in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call