Abstract

Tissue-specific age-dependent changes were observed in Na +K +-, Ca 2+-, and Mg 2+-ATPase activities in tropical tasar silkworm, Antheraea mylitta Drury. Maximum enzyme activity was recorded in all the tissues on day 12 (before spinning) in control group of animals. In testis, Na +K +-, Ca 2+-, and Mg 2+-ATPase activities gradually increased from day 2 to day 12 during fifth larval age and level was maintained up to adult eclosion while, in ovary, a marked decline was noted up to day of adult emergence. Further, a significant and sharp rise was found in ATPase activity in silk gland tissue up to day 12 and afterwards a drastic fall was noted on day 15 (end of spinning) during fifth larval age. Administration of T4 to fifth stage larvae (1 hr old) at doses 0.5–2.0 μg/g significantly elevated the Na +K +-, Ca 2+-, and Mg 2+-ATPase activities in larval and pupal gonads in a dose-dependent fashion. But, in moths, the enhancement was very much confined to Na +K +- and Ca 2+-ATPase in testes and only Ca 2+-ATPase in ovaries. Again, in silk glands thyroxine (0.5–2.0 μg/g) caused a significant rise in the all ion-dependent ATPase activities only during the fifth larval stage. Interestingly, higher doses of T4 (4.0 μg/g) caused a significant reduction in Na +K +-, Ca 2+- and Mg 2+-ATPase in all the tissues almost all the days studied so far. However, lower doses of T4 (0.1 and 0.25 μg/g) remained ineffective in altering the different ion-specific ATPase activities. This study suggests, that mammalian thyroxine has a metabolic influence showing biphasic nature of action in tasar silkworm ATPase system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.