Abstract

Concetration of intracellular cyclic AMP (cAMP), and activities of adenylate cyclase and cAMP-dependent protein kinase were examined in swimming and mesenchyme blastulae and primary mesenchyme cells (PMCs) of the sand dollar, Clypeaster japonicus, respectively. In mesenchyme blastulae, the concentration of cAMP increased 45% from that in swimming blastulae. PMCs contained a concentration of cAMP 40% higher than that in whole embryos at the mesenchyme blastula stage. The activity of adenylate cyclase in mesenchyme blastulae was 100% higher than that in swimming blastulae. The activites of cAMP-dependent protein kinase in whole embryos at the above two developmental stages, on the other hand, were quite similar to each other. However, in PMCs the activity of the enzyme was conspicuously higher than that in these embryos, and it reached 190% higher than that in these embryos. Inhibition of cAMP-dependent protein kinase activity by a synthetic inhibitor, H8, caused severe inhibition of PMC migration but it did not exert any effect on PMC ingression. These results suggest that the cAMP-dependent protein kinase activity is involved in PMC migration, but not in PMC ingression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call