Abstract

An empirical propagation prediction model is described for mobile communications from high altitude platforms (HAPs) in different types of built-up areas. The model introduced here is defined as a function of the angle of elevation. The target frequencies are selected from the 2 to 6 GHz frequency band prospective for 3G and 4G mobile systems, namely at 2.0,3.5, and 5.5 GHz. This new HAP model recognizes two cases - line of sight (LOS) and non-line of sight (NLOS) between a HAP and a user at street level. The simulation of the urban environment is based on a statistical approach. Additional shadowing path loss is calculated using the uniform theory of diffraction for NLOS conditions. Normal distribution of the additional shadowing path loss was distinguishable from the simulation results. The shadowing path loss is defined as a function of the elevation angle. The results of the empirical model developed for idealized conditions are verified by measurements taken from a remote-controlled airship in different types of urban environment. Close correlation was achieved between the theoretical model and the experimental data. The HAP elevation dependent shadowing model is easy to implement and can be used for realistic planning and simulations of mobile networks provided via HAPs in built-up areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.