Abstract

The Geoscience Laser Altimeter System (GLAS) aboard ICESat, launched in January 2003, has been designed to detect and monitor changes in the cryosphere. The first objective of this paper is to present high‐resolution ice‐surface elevation maps derived from GLAS data, using geostatistical analysis. In a regional study of Walgreen Coast and Northern Ellsworth Land, West Antarctica, differences in the representation of geographic and morphologic features in maps based on ERS‐1 radar altimeter data and on GLAS data are investigated, with the result that in particular in topographically complex coastal areas and the margin of the ice sheet the improvement in precision and accuracy of the laser altimeter is significant. A second, applied objective is to map elevation changes in Pine Island Glacier, a glacier that plays a key role in the question of stability of the West Antarctic Ice Sheet and has been changing rapidly in recent years. Results of elevation differencing of 2003‐GLAS‐data and 1995‐ERS‐1‐radar‐altimeter‐data DEMs (1) show that thinning rates have been increasing and (2) are applied to attribute the observed changes in Pine Island Glacier to internal processes in the glacier, related to dynamic thinning. More generally, this application serves to demonstrate that GLAS data facilitate study of cryospheric change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call