Abstract

We analyzed Antarctic ice-sheet elevation change (dH/dt) from 1995 to 2000 using 123 million elevation change measurements from European Remote Sensing 2 ice-mode satellite radar altimeter data covering an area of about 7.2 million km/sup 2/. Almost all drainage basins in east Antarctica had average dH/dt values within /spl plusmn/3.0 cm/year, whereas drainage basins in west Antarctica had substantial spatial variability with average dH/dt values ranging between -11 to +12 cm/year. The east Antarctic ice sheet had a five-year trend of 1/spl plusmn/0.6 cm/year, where 13 out of the 14 basins had either a positive trend or a trend that was not significantly different than zero. The west Antarctic ice sheet had a five-year trend of -3.6/spl plusmn/1.0 cm/year due largely to strong negative trends of around 10 cm/year for basins in Marie Byrd Land along the Pacific sector of the Antarctic coast. The continent as a whole had a five-year dH/dt trend of 0.4/spl plusmn/0.4 cm/year. Finally, time series constructed for the Pine Island, Thwaites, De Vicq, and Land glaciers in west Antarctic showed five-year dH/dt trends from -26 to -135 cm/year that were significantly more negative than the average dH/dt trends in their respective basins. The strongly negative dH/dt values for these coastal glacier outlets are consistent with recently reported results indicating increased basal melting at these glaciers' grounding lines caused by ocean thermal forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.