Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters hold promise for efficient organic light-emitting diodes (OLEDs) and wide gamut displays. An azepine donor is introduced into the boron-nitrogen system for the first time. The highly twisted conformation of a seven-ring embedded new molecule, TAzBN, increases the intermolecular distances, suppressing self-aggregation emission quenching. Meanwhile, the azepine donor is crucial to achieve a narrow singlet-triplet gap (0.03 eV) as well as boost the reverse intersystem crossing (RISC) rate to 8.50 × 105 s-1. It is noteworthy that TAzBN demonstrates an impressive photoluminescence quantum yield of 94%. In addition, its nonsensitized OLED displayed a remarkable external quantum efficiency (EQEmax) with values peaking at 27.3%, and an EQE of 21.4% at 500 cd m-2. This finding shows that when TAzBN is used at a high concentration of 10 wt%, its device maintains efficiency even at higher brightness levels, highlighting TAzBN's resistance to aggregation quenching. Furthermore, TAzBN enantiomers showed circularly polarized photoluminescence characteristics with dissymmetry factors |g PL| of up to 1.07 × 10-3 in doped films. The curved heptagonal geometry opens an avenue to design the MR-TADF emitters with fast spin-flip and chiroptical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.