Abstract

Carbon fiber reinforced dual-matrix composites (CHM) including carbon fiber reinforced hydroxyapatite-polymer matrix composites (CHMP) and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites (CHMC) have great potential application in the field of artificial hip joints, where a combination of high mechanical strength and excellent biotribological property are required. In this work, the graphene-silicon nitride nanowires (Graphene-Si3N4nws) interlocking interfacial enhancement were designed and constructed into CHM for boosting the mechanical and biotribological properties. The graphene and Si3N4nws interact with each other and construct interlocking interfacial enhancement. Benefiting from the Graphene-Si3N4nws synergistic effect and interlocking enhancement mechanism, the mechanical and biotribological properties of CHM were promoted. Compared with CHMP, the shear and compressive strengths of Graphene-Si3N4nws reinforced CHMP were increased by 80.0% and 61.5%, respectively. The friction coefficient and wear rate were reduced by 52.8% and 52.9%, respectively. Compared with CHMC, the shear and compressive strengths of Graphene-Si3N4nws reinforced CHMC were increased by 145.4% and 64.2%. The friction coefficient and wear rate were decreased by 52.3% and 73.6%. Our work provides a promising methodology for preparing Graphene-Si3N4nws reinforced CHM with more reliable mechanical and biotribological properties for use in artificial hip joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.