Abstract

It remains a great challenge to explore desirable cathodes for sodium-ion batteries to satisfy the ever-increasing demand for large-scale energy storage systems. In this Letter, we report a NASICON-structured Na4MnCr(PO4)3 cathode with high specific capacity and operation potential. The reversible access of the Mn2+/Mn3+ (3.75/3.4 V), Mn3+/Mn4+ (4.25/4.1 V), and Cr3+/Cr4+ (4.4/4.3 V vs Na/Na+) redox couples in a Na4MnCr(PO4)3 cathode endows a distinct three-electron redox reaction during the insertion/extraction process. The highly stable NASICON structure with a small volume variation upon cycling ensures long-time cycling stability (73.3% capacity retention after 500 cycles within the potential region of 2.5-4.6 V). The impedance analysis and interface characterization indicate that the evolution of a cathode electrolyte interphase at high potential is correlated with the capacity fading, while the robustness of the NASICON framework is redemonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call