Abstract

A rapid and reliable procedure named as elevated temperature-assisted surfactant-enhanced emulsification microextraction based on solidification of floating organic drop was developed for determination of UV filters in environmental water samples followed by high-performance liquid chromatography with diode array detection analysis. In the present work, a mixture of extraction solvent (1-undecanol) and emulsifier (Tween 80) was injected rapidly into the sample solution heated at an elevated temperature. The preheated sample dispersed the extraction solvent into sample solution immediately on injection of the mixture. Various parameters influencing the extraction efficiency including type and volume of extraction solvent, type and concentration of surfactant, temperature of aqueous solution, extraction time and solution pH were investigated and optimized. Under the optimum conditions, low limits of detection (0.8–1.4 ng mL−1) and limits of quantification (2.7–4.0 ng mL−1) were obtained. The precision of this method was investigated at 10 ng mL−1, and the relative standard deviations ranged between 1.2 and 5.1% for intra-day and inter-days determinations. The proposed method was successfully applied to determine the UV filters in genuine water samples with relative recoveries ranged from 88.8 to 98.2%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call