Abstract

This paper considers two candidate automotive piston alloys and highlights the influence of microstructural features on fatigue behaviour. Fatigue initiation and subsequent short crack growth was assessed at 20, 200 and 350 °C. It is shown that both temperature and test frequency have a strong influence on the fatigue performance of the materials tested. The microstructure was quantitatively characterised in terms of the primary Si distribution. Together with post failure analysis, this allowed identification of critical microstructural features affecting both fatigue crack initiation and early growth. Large primary Si particles were found to act as preferential initiation sites by cracking or decohesion (dependent on test temperature) and are also sought out preferentially during short crack growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call