Abstract
The elevated-temperature plasticity and flow behavior of an Er-modified, heat-resistant ZA73 alloy was evaluated by thermal simulation. The results showed that the addition of Er to ZA73 alloy notably improves the deformability and higher strain rate and temperature favors hot deformation. Bars with sound surface quality were successfully extruded at 350 °C and a strain rate of ~ 0.1 s − 1 . Furthermore, dynamic precipitation of nano-sized spherical τ phase was found to occur uniformly in the α-Mg matrix during hot extrusion, which is considered helpful to both strength and plasticity enhancement. The yield strength and ultimate tensile strength of the as-extruded bars reached 240–265 MPa and 355–360 MPa, respectively, while maintaining a large elongation rate of 18–19.5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.