Abstract

In this study, nanoporous zirconia (ZrO 2) and titania (TiO 2) coatings are shown to stabilize the cycling performance of lithium-ion batteries with LiMn 2O 4 spinel cathodes. The effect of firing temperature on the coating pore size is discussed and the resulting performance of the coated cathodes is evaluated. Stabilization mechanisms, such as neutralization of acidic electrolytes by ZrO 2 and TiO 2 coatings, are examined. It is proposed that the establishment of a complex nanoporous network for lithium-ion transport results in a more uniform current distribution at the particle surface, thereby suppressing capacity fade that may be associated with surface instabilities of the spinel electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.