Abstract

Abstract The “head-in-pillow” (HnP) defects in lead-free solder joint interconnections of Integrated Circuit (IC) packages with conventional (small) standoff heights of the solder joints, and particularly in packages with fine pitches, are attributed by many electronic material scientists to the three major causes: attributes of the manufacturing process, solder material properties, and design-related issues. The latter are thought to be caused primarily by elevated stresses in the solder material, as well as by the excessive warpage of the Printed Circuit Board (PCB)-package assembly and particularly by the differences in the thermally induced curvatures of the PCB and the package. In this analysis, the stress and warpage issue is addressed using an analytical predictive stress model. The model is a modification and an extension of the model developed back in 1980s by the first author. It is assumed that it is the difference in the postfabrication deflections of the PCB-package assembly that is the root cause of the solder material failures and particularly and perhaps the HnP defects. The calculated data based on the developed stress model suggest that the replacement of the conventional ball grid array (BGA) designs with designs with elevated standoff heights of the solder joints could result in significant stress and warpage relief and, hopefully, in a lower propensity of the IC package to HnP defects as well. The general concepts are illustrated by a numerical example, in which the responses to the change in temperature of a conventional design, referred to as BGA, and a design with solder joints with elevated standoff heights, referred to as column grid array (CGA), are compared. The computed data indicated that the effective stress in the solder material was relieved by about 40% and the difference between the maximum deflections of the PCB and the package was reduced by about 60%, when the BGA design was replaced by a CGA system. Although no definite proof that the use of solder joints with elevated standoff heights will lessen the package propensity to the HnP defects is provided, the authors nonetheless think that there is a reason to believe that the application of solder joints with elevated standoff heights could result in a substantial improvement in the general IC package performance, including, perhaps, its propensity to HnP defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call