Abstract

Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans.

Highlights

  • Oxidative and other forms of damage to cellular components occur throughout the lifespan of organisms [1]

  • We investigated the impact of proteasome capacity on replicative lifespan in Saccharomyces cerevisiae using a genetic system that allows manipulation of ubiquitin/ proteasome system (UPS) abundance at the transcriptional level

  • The results obtained reveal a positive correlation between proteasome capacity and longevity, with reduced lifespan in cells with low proteasome abundance or activity and strong lifespan extension upon up-regulation of the UPS in a mechanism that is at least partially independent of known yeast longevity modulating pathways

Read more

Summary

Introduction

Oxidative and other forms of damage to cellular components occur throughout the lifespan of organisms [1]. Many reports document a gradual decline in repair and maintenance systems in aging cells [2], suggesting that impaired repair and clearance of damaged macromolecules represents a crucial origin of age-related cellular dysfunction [3]. If translation and chaperone-assisted protein folding/disaggregation fail, larger protein aggregates or damaged organelles are cleared by macroautophagy in all eukaryotes, while specific proteins are removed from the cytoplasm by chaperone-mediated autophagy in mammals [5]. Both activities result in destruction of damaged molecules in an enclosed hydrolytic environment, the lysosome. Damaged proteins in the nucleus and cytoplasm of eukaryotic cells are eliminated by the ubiquitin/proteasome system [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call