Abstract

The brain vesicular monoamine transporter (VMAT2) is essential for neuronal monoamine storage and regulation of monoaminergic neurotransmission. We demonstrated previously a high degree of similarity between the pharmacodynamic characteristics of platelet and brain VMAT2. Opioids induce increase of dopamine release in limbic structures. In the present study we assessed the VMAT2 pharmacodynamic characteristics using high affinity [(3)H]dihydrotetrabenazine (TBZOH) binding to platelets of former male heroin addicts maintained on methadone (n = 12) compared to age-matched healthy controls (n = 13). A significant increase (19%, p < 0.05) in platelet VMAT2 density (Bmax) was observed in the methadone treated patients compared to controls. There was no significant difference in the affinity of [(3)H]TBZOH to its platelet binding site. The increased VMAT2 density may reflect a compensatory attempt to prevent vesicular depletion due to chronic methadone exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.