Abstract
The impact of elevated pCO(2 )on N-metabolism of hydroponically grown wild-type and transformed tobacco plants lacking root nitrate reduction was studied in order to elucidate the effects on (i) nitrate uptake, (ii) long-distance transport of N, (iii) nitrate reduction with emphasis on root-NR, and (iv) the allocation of N between the root and shoot. The findings were related to alterations of growth rates. At elevated pCO(2 )the wild type exhibited higher growth rates, which were accompanied by an increase of NO(3)(-)-uptake per plant, due to a higher root:shoot ratio. Furthermore, elevated pCO(2 )enhanced nitrate reduction in the roots of the wild type, resulting in enhanced xylem-loading of organic N (amino-N) to supply the shoot with sufficient nitrogen, and decreased phloem-transport of organic N in a basipetal direction. Transformed tobacco plants lacking root nitrate reduction were smaller than the wild type and exhibited lower growth rates. Nitrate uptake per plant was decreased in transformed plants as a consequence of an impeded root growth and, thus, a significantly decreased root:shoot ratio. Surprisingly, transformed plants showed an altered allocation of amino-N between the root and the shoot, with an increase of amino-N in the root and a substantial decrease of amino-N in the shoot. In transformed plants, xylem-loading of nitrate was increased and the roots were supplied with organic N via phloem transport. Elevated pCO(2 )increased shoot-NR, but only slightly affected the growth rates of transformed plants, whereas carbohydrates accumulated at elevated pCO(2 )as indicated by a significant increase of the C/N ratio in the leaves of transformed plants. Unexpectedly, the C/N balance and the functional equilibrium between root and shoot growth was disturbed dramatically by the loss of nitrate reduction in the root.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.