Abstract
The in vitro production of mammalian embryos suffers from low efficiency, with 50-70% of all fertilized oocytes failing to develop to the blastocyst stage. This high rate of developmental failure is due, in part, to the effects of oxidative stress generated by reactive oxygen species (ROS). The p66Shc adaptor protein controls oxidative stress response by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidants. This study explored the relationship between p66Shc levels, redox state, and developmental potential in early bovine embryos. Embryo developmental potential was established based on observing their time of first cleavage. P66Shc, catalase, and mitochondrial-specific, manganese-superoxide dismutate (MnSOD) levels were compared between embryos with high and low developmental potentials. Additionally, p66Shc, catalase, and MnSOD content were assayed following a variety of oxidative stress-inducing and-alleviating conditions. Increased developmental potential correlated with significantly lower p66Shc content, significantly higher levels of catalase and MnSOD, and significantly lower intracellular ROS levels (MitoSOX staining) and reduced DNA damage (γ-H2A.X(phospho S139) immunostaining). p66Shc content was increased by either high (20%) O(2) culture or H(2)O(2) treatment, and significantly decreased by supplementing culture media with the antioxidant polyethylene glycol-conjugated catalase. While the abundance of p66Shc varied according to pro/anti-oxidant culture conditions, antioxidant content varied only according to developmental potential. This discrepancy has important implications regarding ongoing efforts towards maximizing in vitro embryo production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.