Abstract

The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P.deltoides cv. '55/56'× P.deltoides cv. 'Imperial') and 107 (P.euramericana cv. '74/76') with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper>middle>lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call